A two-step high-order compact scheme for the Laplacian operator and its implementation in an explicit method for integrating the nonlinear Schrödinger equation
نویسندگان
چکیده
We describe and test an easy-to-implement two-step high-order compact (2SHOC) scheme for the Laplacian operator and its implementation into an explicit finite-difference scheme for simulating the nonlinear Schrödinger equation (NLSE). Our method relies on a compact ‘double-differencing’ which is shown to be computationally equivalent to standard fourth-order non-compact schemes. Through numerical simulations of the NLSE using fourth-order Runge-Kutta, we confirm that our scheme shows the desired fourth-order accuracy. A computation and storage requirement comparison is made between the 2SHOC scheme and the non-compact equivalent scheme for both the Laplacian operator alone, as well as when implemented in the NLSE simulations. Stability bounds are also shown in order to get maximum efficiency out of the method. We conclude that the modest increase in storage and computation of the 2SHOC schemes are well worth the advantages of having the schemes compact, and their ease of implementation makes their use very useful for practical implementations.
منابع مشابه
A two-step high-order compact scheme for the Laplacian operator and its implementation in an explicit method for integrating the nonlinear Schrdinger equation
Wedescribe and test an easy-to-implement two-step high-order compact (2SHOC) scheme for the Laplacian operator and its implementation into an explicit finite-difference scheme for simulating the nonlinear Schrödinger equation (NLSE). Our method relies on a compact ‘double-differencing’ which is shown to be computationally equivalent to standard fourthorder non-compact schemes. Through numerical...
متن کاملA Local Strong form Meshless Method for Solving 2D time-Dependent Schrödinger Equations
This paper deals with the numerical solutions of the 2D time dependent Schr¨odinger equations by using a local strong form meshless method. The time variable is discretized by a finite difference scheme. Then, in the resultant elliptic type PDEs, special variable is discretized with a local radial basis function (RBF) methods for which the PDE operator is also imposed in the local matrices. Des...
متن کاملUnconditionally Stable Difference Scheme for the Numerical Solution of Nonlinear Rosenau-KdV Equation
In this paper we investigate a nonlinear evolution model described by the Rosenau-KdV equation. We propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of O(τ2 + h2). Furthermore we show the existence and uniqueness of numerical solutions. Comparing the numerical results with other methods in...
متن کاملFourth-order numerical solution of a fractional PDE with the nonlinear source term in the electroanalytical chemistry
The aim of this paper is to study the high order difference scheme for the solution of a fractional partial differential equation (PDE) in the electroanalytical chemistry. The space fractional derivative is described in the Riemann-Liouville sense. In the proposed scheme we discretize the space derivative with a fourth-order compact scheme and use the Grunwald- Letnikov discretization of the Ri...
متن کاملConvergence of an Eighth-Order Compact Difference Scheme for the Nonlinear Schrödinger Equation
A new compact difference scheme is proposed for solving the nonlinear Schrödinger equation. The scheme is proved to conserve the total mass and the total energy and the optimal convergent rate, without any restriction on the grid ratio, at the order of O h8 τ2 in the discrete L∞-norm with time step τ and mesh size h. In numerical analysis, beside the standard techniques of the energy method, a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Computational Applied Mathematics
دوره 251 شماره
صفحات -
تاریخ انتشار 2013